Close correlation between activity in brain area MT/V5 and the perception of a visual motion aftereffect

نویسندگان

  • Sheng He
  • Eric R. Cohen
  • Xiaoping Hu
چکیده

Studies in primate physiology and human functional neuroimaging have convincingly shown that the area of the brain termed MT/V5(+)-which includes the middle temporal visual area MT/V5 along with adjacent motion-sensitive areas such as MST--is involved in the processing of motion information [1,2]. Tootell et al. [3] showed that the blood oxygenation level dependent (BOLD) signal measured by functional magnetic resonance imaging (fMRI) in the human MT/V5+ seemingly correlates with the strength of perceived motion aftereffect (MAE), the illusory motion of a stationary pattern that one sees after adapting to a moving pattern [4]. The signal in MT/V5+ decayed slowly during the period when the MAE was seen. It is possible that this slow decrease in MT/V5+ activity was unrelated to the perceptual experience of motion. After replicating Tootell et al.'s experiment, a modified version of the experiment was conducted in which a blank period was inserted between the adapting motion stimulus and the stationary testing pattern. The results demonstrated that MT/V5+ activity indeed decayed more slowly after an effective unidirectional motion adaptation than after bidirectional adaptation, without corresponding perception of MAE. Nevertheless, in a more conclusive experiment, we adapted observers to a unidirectional motion for a very long period and showed that the activity in MT/V5+ changed in synchrony with the presence and absence of perceived MAE, simply as a result of presenting a stationary visual stimulus in and out of the adapted retinal region.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repetitive TMS over V5/MT shortens the duration of spatially localized motion aftereffect: The effects of pulse intensity and stimulation hemisphere

Causal relevance of the cortical area V5/MT for motion (aftereffect) perception has been shown when rTMS pulses have been applied onto this area, leading to disruption of the percept. Typically, the inducing and test stimuli have consisted in a spatially contiguous area from where stimulation is presented. Observers have had no need to divide attention between spatially remote areas including m...

متن کامل

Attention, Adaptation, and the Motion Aftereffect

Activation of the human visual motion area V5/MT was previously thought to be the basis of the motion aftereffect. New findings suggest that previous observations were confounded by attention and arousal, providing evidence that adaptation of directionally selective neurons in area V5/MT represents the fundamental substrate for the motion aftereffect.

متن کامل

Motion area V5/MT+ response to global motion in the absence of V1 resembles early visual cortex

Motion area V5/MT+ shows a variety of characteristic visual responses, often linked to perception, which are heavily influenced by its rich connectivity with the primary visual cortex (V1). This human motion area also receives a number of inputs from other visual regions, including direct subcortical connections and callosal connections with the contralateral hemisphere. Little is currently kno...

متن کامل

Op-brai140329 164..178

Motion area V5/MT+ shows a variety of characteristic visual responses, often linked to perception, which are heavily influenced by its rich connectivity with the primary visual cortex (V1). This human motion area also receives a number of inputs from other visual regions, including direct subcortical connections and callosal connections with the contralateral hemisphere. Little is currently kno...

متن کامل

The Neural Basis of Centre-Surround Interactions in Visual Motion Processing

Perception of a moving visual stimulus can be suppressed or enhanced by surrounding context in adjacent parts of the visual field. We studied the neural processes underlying such contextual modulation with fMRI. We selected motion selective regions of interest (ROI) in the occipital and parietal lobes with sufficiently well defined topography to preclude direct activation by the surround. BOLD ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 8  شماره 

صفحات  -

تاریخ انتشار 1998